Characterization of a host protein associated with brome mosaic virus RNA-dependent RNA polymerase.
نویسندگان
چکیده
The association of host proteins with viral RNA replication proteins has been reported for a number of (+)-strand RNA viruses. However, little is known about the identity or function of these host proteins in viral replication. In this paper we report the characterization of a host protein associated with the RNA-dependent RNA polymerase (RdRp) from brome mosaic virus (BMV)-infected barley. A host protein was specifically and proportionally enriched with BMV RdRp activity through several purification steps. This RdRp-associated host protein reacted with an antiserum prepared against wheat germ eukaryotic translation initiation factor 3 (eIF-3). The RdRp-associated host protein, the p41 subunit of wheat germ eIF-3, and an antigenically related protein from rabbit reticulocyte lysates were all found to bind with high affinity and specificity to BMV-encoded protein 2a, which is involved in viral RNA replication. Moreover, addition of wheat germ eIF-3 or the p41 subunit from wheat germ to BMV RdRp gave a specific and reproducible 3-fold stimulation of (-)-strand RNA synthesis in vivo. These results suggest that the barley analog of eIF-3 subunit p41, or a closely related protein, associates with BMV RdRp in vivo and is involved in BMV RNA replication. This observation and the established role of translation factors in bacteriophage Q beta RdRp suggest that association with translation factors may be a general feature of RNA replication by (+)-strand RNA viruses.
منابع مشابه
Host deadenylation-dependent mRNA decapping factors are required for a key step in brome mosaic virus RNA replication.
The genomes of positive-strand RNA [+RNA] viruses perform two mutually exclusive functions: they act as mRNAs for the translation of viral proteins and as templates for viral replication. A universal key step in the replication of +RNA viruses is the coordinated transition of the RNA genome from the cellular translation machinery to the viral replication complex. While host factors are involved...
متن کاملMutation of host DnaJ homolog inhibits brome mosaic virus negative-strand RNA synthesis.
The replication of positive-strand RNA viruses involves not only viral proteins but also multiple cellular proteins and intracellular membranes. In both plant cells and the yeast Saccharomyces cerevisiae, brome mosaic virus (BMV), a member of the alphavirus-like superfamily, replicates its RNA in endoplasmic reticulum (ER)-associated complexes containing viral 1a and 2a proteins. Prior to negat...
متن کاملInitiation of genomic plus-strand RNA synthesis from DNA and RNA templates by a viral RNA-dependent RNA polymerase.
In contrast to the synthesis of minus-strand genomic and plus-strand subgenomic RNAs, the requirements for brome mosaic virus (BMV) genomic plus-strand RNA synthesis in vitro have not been previously reported. Therefore, little is known about the biochemical requirements for directing genomic plus-strand synthesis. Using DNA templates to characterize the requirements for RNA-dependent RNA polym...
متن کاملIn vitro transcription by the turnip yellow mosaic virus RNA polymerase: a comparison with the alfalfa mosaic virus and brome mosaic virus replicases.
Recently, we showed that the main determinant in the tRNA-like structure of turnip yellow mosaic virus RNA to initiate minus-strand synthesis in vitro is the 3' ACCA end. By mutational analysis of the 3'-terminal hairpin, we show here that only a non-base-paired ACCA end is functional and that the stability of the wild-type 3'-proximal hairpin is the most favorable, in that it has the lowest De...
متن کاملBrome mosaic virus polymerase-like protein 2a is directed to the endoplasmic reticulum by helicase-like viral protein 1a.
Brome mosaic virus (BMV), a positive-strand RNA virus in the alphavirus-like superfamily, encodes RNA replication proteins 1a and 2a. 1a contains a C-terminal helicase-like domain and an N-terminal domain implicated in viral RNA capping, and 2a contains a central polymerase-like domain. 1a and 2a colocalize in an endoplasmic reticulum (ER)-associated replication complex that is the site of BMV-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 90 4 شماره
صفحات -
تاریخ انتشار 1993